
一、基本信息
职称:副教授
最高学位:博士
主要研究方向:
1.文本挖掘
2.自然语言处理(NER,关系抽取等)
3.知识工程(智能文档解析,知识图谱构建)
4.生物信息处理(药物重定位,分子性质预测等)
导师类别(专硕、学硕、博导):专硕、学硕
工作单位:武汉理工大学计算机与人工智能学院
邮箱:pengjing@whut.edu.cn
二、教育及工作经历
2016.08-至今 武汉理工大学,计算机学院,副教授
2011.12-2014.03 东北农业大学,博士后
2008.04-2011.07 日本佳能公司,研发本部,系统工程
2007.10-2008.03 北海道大学,信息科学学院,研究员
2006.10-2007.03 北海道工业大学,工学院,兼职讲师
2007.09 北海道大学,信息科学专业,博士
2003.06 武汉科技大学,计算机应用专业,硕士
三、近期主持参与的科研项目
1.2021-2023,“智能大数据解析系统”,湖北省科技厅项目,参与
2.2021-2024,“双孢蘑菇抗病新种质筛选、抗性遗传解析及其分子设计育种”,国家自然科学基金项目,参与
3.2021-2025,“大豆落花落荚调控基因的克隆与功能解析”,国家自然科学基金项目,参与
4.2019-2024,“mRNA测序数据可视化分析”,企业委托科技类项目,主持
5.2018-2020,“基于图像的植物叶片高通量表型数据提取算法研究”,国家自然科学基金青年项目,主持
6.2016.1 – 2020.12,国家重点研发计划“主要经济作物分子设计育种”子课题:“分子设计育种信息平台”,参与
7.2013.1-2016.12,黑龙江省教育厅海外学人科研资助项目“基于文本挖掘方法的生物启动子数据库研究”,主持
8.2012.1-2013.12,黑龙江省博士后资助“光周期调控大豆开花的数学模型与分析”,主持
四、近期代表性学术成果
学术论文:
1.MMR: A Multi-view Merge Representation model for Chemical-Disease relation extraction, COMPUTATIONAL BIOLOGY AND CHEMISTRY,2024 (SCI Q2)
2.POLAT: Protein function prediction based on soft mask graph network and residue-Label ATtention, COMPUTATIONAL BIOLOGY AND CHEMISTRY,2024 (SCI Q2)
3.Tensor improve equivariant graph neural network for molecular dynamics prediction, COMPUTATIONAL BIOLOGY AND CHEMISTRY,2024 (SCI Q2)
4.MKGE: Knowledge graph embedding with molecular structure information, COMPUTATIONAL BIOLOGY AND CHEMISTRY,2022 (SCI Q2)
5.IMSE: interaction information attention and molecular structure based drug drug interaction extraction, BMC BIOINFORMATICS,2022 (JCR Q2)
6.Learning Label Independence and Relevance for Multi-Label Biomedical Text Classification, IEEE International Conference on Systems, Man, and Cybernetics,2022 (CCF)
7.Integrating Label Semantic Similarity Scores into Multi-Label Text Classification, International Conference on Artificial Neural Networks,2022(CCF)
8.Using Center Vector and Drug Molecular Information for Drug Drug Interaction Extraction, 2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021(CCF)
9.Chemical-protein Interaction Extraction via ChemicalBERT and Attention Guided Graph Convolutional Networks in Parallel, 2020 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2020 (CCF)
10.Phenotype Extraction Based on Word Embedding to Sentence Embedding Cascaded Approach,IEEE Transactions on NanoBioscience,2018,(SCI JCR Q2)
11.A gene–phenotype relationship extraction pipeline from the biomedical literature using a representation learning approach, Bioinformatics,2018, (SCI Q1)
12.QTLMiner: QTL database curation by mining tables in literature, Bioinformatics,2018, (SCI Q1)
13.PopGeV: a web-based large-scale population genome, Bioinformatics,2018, (SCI Q1)
14.Cascade Word Embedding to Sentence Embedding: A Class Label Enhanced Approach to Phenotype Extraction, IEEE International Conference on Bioinformatics and Biomedicine,2017, (CCF B)